防止过拟合其他方法

在深度学习中,为了避免出现过拟合(Overfitting),通常输入充足的数据量是最好的解决办法。当数据无法达到模型的要求或者添加数据后模型由于某类数据过多导致过拟合时,以下方法也可以发挥一些作用:

(1) Regularization:数据量比较小会导致模型过拟合, 使得训练误差很小而测试误差特别大. 通过在Loss Function 后面加上正则项可以抑制过拟合的产生。缺点是引入了一个需要手动调整的hyper-parameter。

(2) Dropout:这也是一种正则化手段,不过跟以上不同的是它通过随机将部分神经元的输出置零来实现。

(3) Unsupervised Pre-training:用Auto-Encoder或者RBM的卷积形式一层一层地做无监督预训练, 最后加上分类层做有监督的Fine-Tuning。

(4) Transfer Learning(迁移学习):在某些情况下,训练集的收集可能非常困难或代价高昂。因此,有必要创造出某种高性能学习机(learner),使得它们能够基于从其他领域易于获得的数据上进行训练,并能够在对另一领域的数据进行预测时表现优异。